Category: Teaching

Two apps I use everyday as a math professor

For a long time I was a smartphone skeptic – happy with my dumbphone all the way up to 2010 and of course very judgmental of anyone I deemed to be “wasting time” with such a silly device. Well, here we are in 2015 and I have had my smartphone for more than a year and just like everyone said, it has become an indispensable tool.

Naturally I have a lot of cool apps right? (like neko atsume!) Sure – but there are a couple that actually help me day to day with my job.

#1 Wabbitemu

Wabbitemu will turn your phone into a TI83, TI84, or even the fancy pants TI84+. Writing an exam key and too lazy to go find your graphing calculator? Well this has you covered. I went old school and set it up as an 83. This is a screenshot straight off my phone (it sets it up so the phone menus only come up when you click).

wabbit emu screenshot android

 

Beautiful!

#2 Camscanner

Our online students take all of their exams on campus at our testing center. In the past, when I graded exams, the online students wouldn’t have the same experience of seeing all the feedback since they wouldn’t necessarily see the whole exam unless they picked it up. Camscanner has changed all of this. With a few clicks, you can create a really nice PDF using any picture or pictures (each picture can be set to be its own page).

2015-09-15 22.05.53

 

So take a document, snap a pic of each page, and boom – nice PDF handout.

The screenshot above is from a time where I wrote the entire key to a practice exam on the board but hadn’t yet typed it up. Realizing that about 50% of my students were just taking pictures of the key instead of writing it down, I decided to test if the app would make a good PDF from something like this and it did. Really impressive (and now I don’t have to type up the key).

Honorable Mention: Panecal Plus

I can’t explain it, but when I want to just do a quick calculation, I tend to want to use a simpler calculator. That said, the default calculator on android is just TOO simple. Here is where Panecal Plus comes in. This is an awesome little scientific calculator.

panecal plus screenshot andoid

 

There is a free version supported by ads, but I like to pay for an app when it’s good so that I can help support developers more directly.

The “I don’t know why I have this but it is still cool” app: R Console Premium

One other honorable mention goes to R Console for Android. You ever just want to code a quick simulation but you aren’t near a computer and don’t care if you can save your code. Yeaaah. Maybe I haven’t either but it doesn’t mean this app isn’t cool.

R Console android

 

I swear that I really have used this a few times! How often was it NOT because it just looks cool? Well, I don’t know the answer to that lol.

 

And here you thought this post was going to talk about wolfram alpha right?

 

 

 

Coming up with realistic data for linear regression examples

Whether it is for writing or for teaching, I am always in need of new and useful data sets. Since the GAISE report was released, everyone who teaches stats in any form is hearing over and over the importance of using REAL LIFE DATA and I agree that this is a good general practice. But sometimes, you need a data set that illustrates a specific idea or students need a simpler context to start with before tackling the (often) more complicated real life applications. I love going through a long real life application in class, but when it comes time for a quiz or a test, I just need to know that students can apply the basic techniques and explain concepts as they apply to the situation.

Let’s say that I am writing a new exam item and need some simple linear regression data set. Students are going to use their TI83 or 84 to get the correlation coefficient, the coefficient of determination, the equation for the line, and finally interpret these values (and things like the slope or y-intercept) in context.

I know I am not alone in this, so I will show you how we can get a reasonable, but not exactly real, data set for them to work with. My favorite tool for this is R (you don’t need to be an expert programmer for this!) but I figure other similar tools will work just as well.

First the context: Suppose a company thinks there may be a linear relationship between the amount they spend on advertising each month (in thousands of dollars) and the total monthly sales (also in thousands of dollars). (**insert instructions to student about performing regression etc**)

In an exam question, I wouldn’t want too many data values as this increases the chance of calculator typos (so tough to grade! is it really a typo? did they know what they were doing?). So, I will come up with 8 realistic looking advertising amounts. It’s too easy to accidentally have a pattern in data I think of the top of my head, so instead, I will use the rnorm function in R. This function let’s me generate random values from a normal distribution.

r-norm-screenshot

This function works with the following inputs:

rnorm(how many data values, mean, standard deviation)

To make this work, I did need to decide on a reasonable mean amount of money spent on advertising each month and a reasonable standard deviation. As you can see, I told it to give me 8 random normal values from a distribution with a mean of 10.6 and a standard deviation of 3.7. But, oops, I should probably round these. Since I will be using this data later, I will do the rounding in R.

r-norm-screenshot-with-rounding

There we go! Much better. Above, I used the round() function. I put in what I wanted to round as the first entry and how many decimals I wanted as the second entry. The next step is to get some good y-values (total sales) while keeping the linear relationship I would like. This requires another judgement call. I must decide what equation I should base these values on. I don’t know if there is one right answer here, but I often will do some googling to make it as realistic as possible.

For the sake of this example, I will just pick one here and say: y = 1.3x + 2.7. (where y is the sales for the month and x is the advertising spend; both in thousands). Since an exact fit will be very boring, I will add in some random error when calculating the sales values. For this one, I will go a little high with it by using a standard deviation of 3 (the mean should be zero).

for-loop-for-regression

For non-programmers, I will explain this code a bit.

The first line:

sales = c(0,0,0,0,0,0,0,0)

is where I initialize the variable sales. This code sets up sales as a set of 8 zeros. Each zero will then be replaced by the values I calculate in the for loop shown below. (sidenote: technically, in R,  y is a vector and not simply “a variable”, but this distinction isn’t important here)

for (i in 1:8){
sales[i] = 1.3*advertising[i] + 2.7 + rnorm(1,0,3)}

With the for loop, I am telling R to take each entry of “advertising” (in R we start at an index of 1) and calculate a “sale” value using the equation I came up with along with a little error (adding the random normal value from rnorm). In the last line, you can see my resulting data.

>sales
[1] 15.32 20.62 22.56 10.74 6.85 17.48 18.13 12.18

From here, it is worth looking to see how it all comes out when students work with this on their calculators. As an exam question, it should be pretty routine – a decent fit and not too crazy looking on the scatterplot.

linear-regression-ti84-screenshot scatterplot-ti84

Pretty good. Notice that my intercept is a little different than planned due to the error I added, but that is to be expected. Here is the final product:

Advertising Spend
(thousands of dollars)
12.29 15.11 14.44 10.17 3.56 11.45 11.10 8.18
Total Sales
(thousands of dollars)
15.32 20.62 22.56 10.74 6.85 17.48 18.13 12.18

Add in a story (what does the company make? what’s the company’s name? what is their motivation?) and you have a nice simple exam problem. This is also a great problem to talk about AFTER the exam. Can we expect that sales are always linearly related to spend? So if I spend more I will always sell more? These questions about extrapolation and the true application of a linear regression model are important in any statistics classroom and applying these techniques in real life.